Fall 2024 Graduate Electives Note - This is not a full comprehensive list. Courses such as advanced journal clubs and departmental Research in Progress are not included. Always check your department guidelines and with your department coordinator, thesis advisor, and the course instructor for permission and guidance. Classroom assignments may change between the time you register and when classes begin. Please check your class schedule for the latest classroom location information before attending class. Fall 2024 Class Schedule: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1248/index.html #### Fall 2024 Selectives (Please see pages 6-7) All first year students will self-select two (2) selectives courses that match their research interest and/or explore the range of disciplines and research emphasis areas. - All Selectives will be held during Second Half Semester - Please note some classes overlap in days/times. - Contact the Instructor or Department Coordinator to confirm if advanced students can enroll along with first year students and if a permission code is required - Selectives will be 1.5-3 credits each | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | |------------------------------------|--------------|----------------------------------|--|---|--|---|----------------------------------| | 9486 | ANAT
7750 | 1.5 | Developmental Neurobiology | Michael Deans | T, Th, F | 10:45AM-
11:35AM | EHSEB 3515B | | Second Ha | f Semester | Cellular | and molecular biology of nervous system development. | | - | | | | Lecture | | Meets W | ith NEUSC 7750 001 | | | | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 10091 | ANAT
7770 | 2.0 | Neural Regulation of Metabolism | Owen Chan | T, Th | 10:45AM-
11:35AM | TBA | | Full Semes Lecture | ter | metabol
of energ
tissue ar | rse is intended to be a graduate level course that provide
sm and feeding. Topics to be covered include neural circ
y balance, the hypothalamic melanocortin system, mesol
d brain energetics. These topics will be discussed in the
obesity and diabetes. | cuits involved in the regimbic reward system as | gulation of brain g
s well as central c | glucose sensing, hypo
onnections with liver | othalamic control
and adipose | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 12779 | BIOL
5275 | 4.0 | Microbial Diversity, Genomics and Evolution | Colin Dale | M, W | 2:00PM-2:50PM
3:05PM-5:00PM
3:05PM-5:00PM | JTB 320
JTB 340
JTB 345 | | Lecture | | ecology
collect s | and the environment. The lecture course provides an is and serves as a primer for all students interested in geno amples from the environment and examines microbial distinct tuition for 5000 level BIOL class that will not be covered to the covered by covere | mics. The integrated la
versity using modern n | boratory class pro
nolecular biologic | vides students with a | in opportunity to | | Class # | C-4-1 # | | | | | | | | | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | Multiple
Sections
Full Semes | BIOL
5425 | 4.0 | Course Title Mycology ashrooms to molds, this course will provide an overview | Bryn Dentinger | Various | Various | Various | Note - This is not a full comprehensive list. Courses such as advanced journal clubs and departmental Research in Progress are not included. Fall 2024 Class Schedule: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1238/index.html | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | |-----------------------------|--------------------|--|--|--|---|--|---| | 14011 | BIOL
5510 | 3.0 | Genes, Development, and Evolution | Michael D Shapiro | T, Th | 10:45AM –
12:05PM | AEB 310 | | Full Semeste
Lecture | | literature
biology
variation
genes the
diversity
complete | anding the molecular basis of evolutionary change is a fue in genetics and developmental biology to explore the mand include the molecular basis of diversity in body plan in other adaptive traits. We will also address how human at control normal variation among species are also involve promises a greater understanding of human health. It is ead prior to taking this course. **isites: 'C-' or better in BIOL 1210 OR BIOL 1610 OR All tital tuition for 5000 level BIOL class that will not be control. | nechanisms that impact of s, limb development and shave shaped animal wed in human disease; the recommended (but not a Biology score of 4+ O | evolutionary chaid evolution, genediversity through nerefore, studying required) that BIOR IB Biology sco | urse focuses on recenge. Topics concentratics of pigmentation domestication. In sog the molecular mechol 2030 is taken con | ate on animal
differences, and
me cases, the
anisms of | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 14097 | BIOL
6120 | 2.0 | Computing with Python | David Goldenberg | T, Th | 10:45AM-
11:35AM | BIOL 150 | | Full Semesta
Lecture | er | biology.
program
overviev | The course is intended to provide an introduction to computer properties of the course is intended primarily for first year graduate aming experience is required. In addition to an introduction of modern computing and the use of Unix-type operation in-class computing exercises, homework exercises and a superior of the computing exercises. | students in the School of
on to the Python langua-
ng systems (including N | f Biological Science, the course income and Linux | nces, but others are welludes a bit of history One of the course structure. | velcome. No prior, a general | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 11436 | BIOL
7961 | 1.0 | Advanced Topics in Biochemistry and Molecular Biology | JS Parkinson | M, Th | 3:30PM-4:30PM
(M)
9:30AM-
10:30AM (TH) | CSC 13 | | First Half S
Special Top | | • | f special interest taught when justified by student and fa | · | aries from year t | | | | Class # | Catalog #
BIO C | Cr Hrs
1.0- | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 16898 | 7100 | 2.0 | Topics in Biochemistry | Peter Shen | TBA | TBA | TBA | | First Half S
Special Top | | Seminar | : Student and faculty discussion of advanced-level topics | s not covered in formal | courses. | | | | Class# | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 1667 | CHEM
7040 | 2.0 | Statistical Thermodynamics | Ryan Steele | M, W, F | 11:00AM –
12:05PM | HEB 2010 | | First Half St | emester | | rse introduces the statistical machinery
used to connect nists, physicists, biologists, and engineers. | nolecular behavior with | thermodynamic | principles. Covered t | copics are useful | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 16382 | CHEM
7050 | 2.0 | Classical Thermodynamics | Valeria Molinero | M, W, F | 8:20AM –
9:25AM | HEB 2010 | | Second Halj
Lecture | | learn to applicati | urse covers classic topics of thermodynamics, including patterns and understand fundamental thermodynamic relations. The material covered in this course is useful for scienamics. | ions, equations, and for | mulae and explor | and electrochemistry
e their importance in | modern | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 1669 | CHEM
7240 | 2.0 | Physical Organic Chemistry | Jacob Lessard | T, Th | 9:10AM -
10:30AM | HEB 2002 | | First Half S
Lecture | emester | binding.
laws, kir | organic chemistry studies the approaches to deciphering The topics include stereochemistry, conformational analetic isotope effects, linear free energy relationships. Sith CHEM 5240 001 | | | | | Note - This is not a full comprehensive list. Courses such as advanced journal clubs and departmental Research in Progress are not included. ## Fall 2024 Class Schedule: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1238/index.html | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | |------------------------------|--------------|----------------------|--|--------------------------|--------------------|------------------------|-----------------| | 1672 | CHEM
7250 | 2.0 | Organic Reaction Mechanisms | Ryan Looper | M, W, F | 11:00AM –
12:05PM | HEB 2010 | | Second Half Semester Lecture | | combina
trajector | examines organic reaction mechanisms involving all functions of fundamental steps, orbital symmetry controlled y analysis and radical reactions. With CHEM 5250 001 | | | e complex mechanis | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 14296 | CHEM
7270 | 2.0 | Organic Spectroscopy I | Bethany Buck-Blanco | M, W, F | 9:35AM-
10:35AM | CSC 25 | | Second Halj
Lecture | f Semester | advance | overed include: Solution NMR theory; experimental set d 1D and 2D NMR techniques; spectral interpretation/ic/ | -up and data acquisition | | | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 6234 | CHEM
7460 | 2.0 | Protein Chemistry | Vahe Bandarian | M, W, F | 8:20AM-
09:25AM | JTB 120 | | Lecture | | chemistr | dy. Subject matter includes enzyme mechanisms, chemi
y.
Yith CHEM 5460 001 | cal modification of prot | eins and cofactor | chemistry. Prerequi | site: organic | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 14730 | CHEM
7640 | 2.0 | Materials Chemistry for Alternative Energy | Ming Lee Tang | M, W, F | 11:00AM –
12:05PM | HEB 2002 | | Second Halj
Lecture | f Semester | material | urse is designed to introduce you to the fundamentals of s for: electrofuels, solar, fuel cells, batteries chemistry a on, or storage, as well as fundamental understanding of <i>Vith CHEM 5640 001</i> | nd engineering of electr | odes used for each | h type of energy pro | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 13043 | CHEM
7725 | 2.0 | Mass Spectrometry | Gabe Nagy | M, W, F | 8:20AM-
9:25AM | CSC 10-12 | | Second Halj
Lecture | | | h-half semester course will cover material related to the ude a discussion of mass spectrometry nomenclature, io | | | cations of mass spec | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 10792 | CHEM
7730 | 2.0 | Fundamentals of Electrochemistry | Henry White | M, W, F | 9:35AM –
10:40AM | PAB 103 | | First Half S
Lecture | emester | | nrse will provide an overview of the fundamental concep
ng chemical reactions at the electrode/electrolyte interfa | | cience. The course | e is devoted to the ba | asic principles | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 21395 | CHEM
7740 | 2.0 | Techniques and Applications of Electrochemistry | Long Luo | M, W, F | 9:35AM –
10:40AM | TBBC 2429 | | Second Halj
Lecture | | technolo | burse is designed to introduce you to electrochemical reacting each of the covered include: a variety of voltamed electrodes, and modern electrochemical technologies. | | | iques, and electroche | | Note - This is not a full comprehensive list. Courses such as advanced journal clubs and departmental Research in Progress are not included. Fall 2024 Class Schedule: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1238/index.html | 11049 | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | |--|---|--|--
--|--|--|---| | | CHEM | 2.0 | Analytical Spectroscopy and Optics | John Conboy | T, TH | 9:10AM - | HEB 2010 | | First Half S | 7770
Semester | | ctures, one discussion per week for 7.5 weeks. This cour
g topics: Basic optics, such as light propagation, polariz | | | | | | Lecture | | spectros
Advance
wavegui | copy, including light sources, wavelength selection, and do topics in absorbance, fluorescence and vibrational (IR des, total internal reflection, and surface plasmon resonatequency generation. | dectors. Sensitivity and
and Raman) spectrosco | dynamic range i ppy. Surface spec | n spectroscopic mea
troscopic methods b | asurements. pased on optical | | Class# | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 21205 | COMP
6960-009 | 3.0 | Programming for BioMedical Data Science | Rebecca Barter &
Jeff Phillips | Online | Online | Online | | Online
Special Top | pics | in data s
represen
contents | rse will provide an introduction to programming, in R accience. Prior programming experience is not required. Stations. Using these common representations, students we and perform basic analysis to evaluate the data veracity elect and complete 4 short courses in the semester to full | tudents will learn how to
will learn to prepare data
to. This course is structur | o write code for larger for analysis star
red as a series of | handling data, focus
ting from various fo
stackable short-cour | ing on dataframe
rmats, visualize its | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 5329 | MBIOL
7570 | 1.0 | Research Ethics | Joyce Havstad | W | 4:00PM -
5:20PM | GC 2900 | | First Half S Lecture | Semester | interest,
students | nination of research integrity and other ethical issues investigation and authorship designation, and the role of second post-docs and regular faculty in the sciences. | | | | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 7982 | MDCRC
6000 | 2.0 | Introduction to Biostatistics | Greg Stoddard | Online | Online | Online | | Online
Lecture | | | tistics with emphasis on medical and epidemiologic resist testing, multiple comparisons, correlation, confidence | | | | | | | | | | | | | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | Class # 14431 | Catalog # MDCRC 6050 | Cr Hrs
2.0 | Course Title Biostatistics for Basic Science | Lead Instructor Greg Stoddard | Day
Online | Time
Online | Bldg/Room
Online | | | MDCRC | 2.0
Applied | | Greg Stoddard lved using the Stata stat | Online istical software. | Online Topics include: desc | Online criptive statistics, | | 14431 | MDCRC | 2.0 Applied significa | Biostatistics for Basic Science statistical methods in basic science. Problems will be so | Greg Stoddard Ived using the Stata stat gement using Stata, con | Online istical software. uputer graphics, s | Online Topics include: descample size determine | Online criptive statistics, nation, and analysis | | 14431 Online | MDCRC | 2.0 Applied significa | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nce testing, multiple comparison adjustment, data mana | Greg Stoddard Ived using the Stata stat gement using Stata, con | Online istical software. uputer graphics, s | Online Topics include: descample size determine | Online criptive statistics, nation, and analysis | | 14431 Online Lecture | MDCRC
6050
Catalog # | Applied signification of clusters | Biostatistics for Basic Science statistical methods in basic science. Problems
will be so nce testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & | Online
istical software.
puter graphics, s
datasets will be u | Online Topics include: description description of the control t | Online
criptive statistics,
nation, and analysis
homework. | | Online Lecture Class # 16439 Full Semest | MDCRC
6050
Catalog #
MDCRC
6450 | Applied significa of cluste Cr Hrs 3.0 This cou Biosketo | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application h, as well as supporting appendices. Over the course of | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib including Abstract, Aithe semester, students were stated as the semester of | Online istical software. nputer graphics, s datasets will be to the Day T ms, Significance will complete a graphic | Online Topics include: description description of the control | Online Criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 rch Plan, and ally in the NIH | | Online Lecture Class # 16439 | MDCRC
6050
Catalog #
MDCRC
6450 | 2.0 Applied signification of cluster Cr Hrs 3.0 This course Bioskett format). | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib including Abstract, Aithe semester, students were stated as the semester of | Online istical software. nputer graphics, s datasets will be to the Day T ms, Significance will complete a graphic | Online Topics include: description description of the control | Online Criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 rch Plan, and ally in the NIH | | Online Lecture Class # 16439 Full Semest | Catalog # MDCRC 6050 Catalog # MDCRC 6450 ter Catalog # | 2.0 Applied signification of cluster Cr Hrs 3.0 This course Bioskett format). | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application h, as well as supporting appendices. Over the course of The course concludes with a mock study section. Enroll | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib including Abstract, Aithe semester, students were started to the semester of | Online istical software. nputer graphics, s datasets will be to the Day T ms, Significance will complete a graphic | Online Topics include: description description of the stand of the standard | Online Criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 rch Plan, and ally in the NIH | | Online Lecture Class # 16439 Full Semest Lecture | MDCRC
6050
Catalog #
MDCRC
6450 | Applied signification of cluster Cr Hrs 3.0 This course Bioskett format), submiss | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application h, as well as supporting appendices. Over the course of The course concludes with a mock study section. Enroll on in the next 12 months. | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib including Abstract, Ai the semester, students wed students should be in | Online istical software. nputer graphics, s datasets will be used to | Online Topics include: description description of the stand of the stand of the stand of the standard | Online criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 rch Plan, and ally in the NIH ant with a planned | | Online Lecture Class # 16439 Full Semest Lecture Class # | Catalog # MDCRC 6050 Catalog # MDCRC 6450 der Catalog # MDCRC 6521 | 2.0 Applied signification of cluster clu | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application h, as well as supporting appendices. Over the course of The course concludes with a mock study section. Enroll on in the next 12 months. Course Title Medicine & Physiology for Molecular Biologists rse explores and provides a richer understanding of humiding the importance of any molecular mechanism at the | Greg Stoddard Ived using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib n including Abstract, Ai the semester, students w ed students should be in Lead Instructor Kevin J Whitehead an physiology and path | Online istical software. Inputer graphics, so datasets will be to the datasets will be to the datasets. The mass of the process proce | Online Topics include: description description of the complex size determinated in lectures and Time 5:00PM - 7:00PM Innovation, Resear ant application (usuriting a research grant of the complex size | Online Criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 The Plan, and ally in the NIH ant with a planned Bldg/Room EHSEB 2908 Etical for | | Online Lecture Class # 16439 Full Semest Lecture Class # 16867 Full Semest | Catalog # MDCRC 6050 Catalog # MDCRC 6450 der Catalog # MDCRC 6521 | Applied signification of cluster Cr Hrs 3.0 This country Bioskett format). Submiss: Cr Hrs 1.0-5.0 This country this country the country that th | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application h, as well as supporting appendices. Over the course of The course concludes with a mock study section. Enroll on in the next 12 months. Course Title Medicine & Physiology for Molecular Biologists rse explores and provides a richer understanding of humiding the importance of any molecular mechanism at the | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib n including Abstract, Ai the semester, students wed students should be in Lead Instructor Kevin J Whitehead an physiology and path the level of cells, organ ar | Online istical software. nputer graphics, s datasets will be used to | Online Topics include: descample size determinated in lectures and Time 5:00PM - 7:00PM, Innovation, Research grant application (usuriting a research grant application) Time 9:10AM-10:30AM is information is critic, and applying this information is critical application. | Online Criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 The Plan, and ally in the NIH ant with a planned Bldg/Room EHSEB 2908 Etical for | | Online Lecture Class # 16439 Full Semest Lecture Class # 16867 Full Semest | Catalog # MDCRC 6050 Catalog # MDCRC 6450 der Catalog # MDCRC 6521 | Applied signification of cluster Cr Hrs 3.0 This country Bioskett format). Submiss: Cr Hrs 1.0-5.0 This country this country the country that th | Biostatistics for Basic Science statistical methods in basic science. Problems will be so nee testing, multiple comparison adjustment, data mana red data (multiple observations in same animal). Anima Course Title Grant Writing rse covers the preparation of a research grant application h, as well as supporting appendices. Over the course of The course concludes with a mock study section. Enroll on in the next 12 months. Course Title Medicine & Physiology for Molecular Biologists rse explores and provides a richer understanding of hum nding the importance of any molecular mechanism at the | Greg Stoddard lved using the Stata stat gement using Stata, con and bench experiment Lead Instructor Anthea Letsou & Julie Shakib n including Abstract, Ai the semester, students wed students should be in Lead Instructor Kevin J Whitehead an physiology and path the level of cells, organ ar | Online istical software. nputer graphics, s datasets will be used to | Online Topics include: descample size determinated in lectures and Time 5:00PM - 7:00PM, Innovation, Research grant application (usuriting a research grant application) Time 9:10AM-10:30AM is information is critic, and applying this information is critical application. | Online Criptive statistics, nation, and analysis homework. Bldg/Room EHSEB 2948 The Plan, and ally in the NIH ant with a planned Bldg/Room EHSEB 2908 Etical for | Note - This is not a full comprehensive list. Courses such as advanced journal clubs and departmental Research in Progress are not included. ## Fall 2024 Class Schedule: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1238/index.html | | | | | | | | South-5C | |----------------------------|---------------|--
--|--|---|---|--| | Second Haly
Special Top | | modification receptor key topic critical at Course gability to | ranced graduate course will cover a range of fundamenta
ations, protein-protein interaction domains, small GTPas
signaling, and protein phase separation as an organizing
es and students will read and present classic and new lite
analysis of the literature.
goals: Students will deepen their mechanistic understand
to pinpoint important knowledge gaps and understand ho-
lity to read and critically analyze the scientific literature | es, kinase/phosphatase as
g principle for signal transcrature in each topic area
ling of core and emergin
w they can be addressed | and ion channel s
ansduction. Instru
a. The class will n
ag concepts in cel
with experiment | ignaling, steroid and
ctors will give intro-
rely heavily on grou
I signaling. Students
al techniques. Studen | d membrane
ductory lectures on
p discussion and
s will sharpen their
ents will improve | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 4515 | PATH
7330 | 3.0 | Basic Immunology | Maria Bettini | T, Th | 2:00PM -
3:30PM | EHSEB 3515B | | Full Semesta
Lecture | er | final thin
students
program
Medical | survey course covering the basic principles in Immunol d of the course will feature clinical and experimental to . It is also open for particularly interested undergrad sturmatic depth. Students should have some exposure to bic Technology (B.S.) and Medical Laboratory Science (Md 3510 prior to taking this course. | pics in Immunology. The
dents, but is not specific
ochemistry, modern generation | e course is prima
ally intended as petics, and cell bio | rily slated for gradu
preparation for Med
logy. It meets the re | ate and master
School due to its
quirements for the | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 19331 | PH TX
7114 | 2.0 | Principles of Toxicology | Alessandro Venosa | T | 1:30PM -
3:30PM | SRB 3290 | | Full Semest | er | effects to
in differ | principles, testing procedures, toxic responses, and targe
hat chemicals may produce based on the dose, exposure
ent organ systems (Neurotoxicology, cardiovascular, lur
rse will also cover environmental toxicology, toxic effec | and hazard of those che | micals. There will icology) that are | ll be a focus on mec | hanisms of toxicity | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 8993 | PHCEU
7010 | 1.5 | Molecular Biology for Pharmaceutical Scientists | Carol Lim | M, W | 11:00AM -
12:30PM | EHSEB 5100B | | Second Halj
Lecture | f Semester | This cour | rse will review fundamental aspects of genetic engineering | ng and molecular biolog | y, with application | on to health sciences | s. | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 7166 | PHCEU
7030 | 2.0 | Macromolecular Therapeutics and Drug Delivery | Shreya Goel | T, Th | 8:50AM-
10:50AM | EHSEB 5100C | | First Half St
Lecture | emester | carriers. | ion to polymer in Pharmaceutics and drug delivery. Transliorecognition and drug targeting. Protein, oligonucleotisite: Graduate student status or instructor consent and Conse | ide, and gene delivery sy | | ns. Macromolecular | and vesicular | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | | 12123 | PHCEU
7040 | 3.0 | Biotechnology | James Herron, Yue
Lu & Shawn Owen | M, W, F | 10:00AM-
12:00PM | EHSEB 5100B | | First Half St | emester | | s of kinetics and mechanisms of organic reactions and st
gradation and stabilization of drugs, proteins, and DNA. | | onships applied to | pharmaceutical sys | stems. Mechanisms | ## **Fall 2024 Selectives** View course schedules online: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1248/index.html Attention: Classroom assignments may change between the time you register. and when classes begin. Please check your class schedule for the latest information before attending class. All Selectives will be held during Second Half Semester. Please note some classes overlap in days/times. # Please note you may need permission codes to register. Please contact the instructor or Department Coordinator. | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | |-----------------|----------------|--|---|--|---|--|--| | 14094 | ANAT
6400 | 1.5 | Fundamentals in Cellular and Molecular
Neuroscience | Jason Shepherd | M, W | 9:00AM -
10:30AM | BPRB 501 | | | | will be to
these pro
The mole
during de
in brain f | ous system is the most complex organ in the body; beha
o introduce core cellular and molecular processes in the re-
cesses can go awry in neurological disorders. Topics co-
ecular basis for synaptic transmission – the conversion of
evelopment and learning How synapses signal to the nucl
function. Molecular basis of common neurological disor-
nt stem cells, organoids | main brain cell types; ne
vered include: Cellular a
f electrical activity by ch
leus to regulate gene ex | urons and glia. In
nd molecular con
nemical synapses
pression The role | n addition, we will hi
mposition of the nerv
s. How synapses forn
e of glia (microglia an | ighlight how
yous system
in circuits
and astrocytes) | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Roon | | 14206 | BIO C
6420 | 1.5 | Biophysical Methods | Michael Kay &
Wesley Sundquist | T, TH | 2:30PM –
3:50PM | EHSEB
2958 | | | | include: | rse will focus on biochemical and biophysical approache
protein-ligand interactions, cooperativity and allostery, prifugation, calorimetry, biosensors, proteomics approach | protein folding and desig | n, spectroscopic | | | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Roon | | 14245 | BIO C
6430 | 1.5 | Structural Methods | Julia Brasch, Erhu
Cao, Chris Hill, &
Peter Shen | M, W, F | 2:00PM -
2:50PM | BPRB 50 | | | | | rse provides an integrated approach to the applications of overed include basic theory and the application of method. | | | roscopy in structural | biology. | | lass # | Catalog # | Cr Hrs | Course Title | Lead Instructor
| Day | Time | Bldg/Roor | | 13996 | BIO C
6600 | 1.5 | Regulation of Metabolism | Greg Ducker &
Keren Hilgendorf | T, Th | 9:30AM -
11:00AM | EHSEB
2600 | | Class # | Catalog # | | nding the pathways and what is known about their regulareas of nutritional sensing and metabolic regulation. Course Title | Lead Instructor Kent Golic, Kelly | Day | Time | Bldg/Roor | | 14099 | BIOL
6140 | 1.5 | Advanced Genetics | Hughes, & Matt
Rich | M, W, F | 10:45AM -
11:35AM | CSC 25 | | | | encompa
a branch
cells, in i
in gene r
source of
of molec | d Genetics covers the fundamentals of classical genetics sses the mechanisms of inheritance and the behavior of of biological investigation that uses mutations and muta solation and in a developmental context. Prokaryotes an egulation and in their cellular biology. Prokaryotes prov f new genetic tools and biological understanding with he ular biology, cell biology and classical genetics to invest | genes and chromosomes
nt phenotypes to study t
d eukaryotes have differ
ided the foundational dis
alth and ecological relev
tigate gene and cell func | in somatic cells
the function and beent modes of inhocoveries of mole
trance. Modern ev | and germ cells. Geno
behavior of cells and
heritance and signific
ecular biology and co
akaryotic genetics blo | etic analysis is
groups of
ant difference
ontinue to be a | | lass #
15927 | Catalog # CHEM | Cr Hrs
2.0 | Course Title | Lead Instructor Jennifer Shumaker- | Day
T, Th | Time
10:45AM- | Bldg/Roon
CSC 25 | | 13927 | 6740 | | Bioanalytical Chemistry | Parry | | 12:05PM | | | | | include a | rse is intended to provide an overview of the methods of discussion of separations techniques, the spectroscopy of methods. | | | | | | lass # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Roon | | 11048 | CHEM
7430 | 2.0 | Chemical Biology of Proteins | Ming Hammond | T, Th | 9:10AM -
10:30AM | HEB 2010 | | | | include c | one half semester course that focuses on the application hemical synthesis of peptides, proteins, and peptide min and signaling. Prerequisite: 2 semesters undergraduate or | nics and chemical biolog | | | | ## **Fall 2024 Selectives** View course schedules online: https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1248/index.html Attention: Classroom assignments may change between the time you register. and when classes begin. Please check your class schedule for the latest information before attending class. All Selectives will be held during Second Half Semester. Please note some classes overlap in days/times. # Please note you may need permission codes to register. Please contact the instructor or Department Coordinator. | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Room | |------------------|------------------------------|---|---|---|---|--|--| | 17664 | H GEN
6490 | 2.0 | Introduction to Omics: Applications to Research | Charlie Murtaugh & Robert Weiss | T, TH | 11:10AM -
12:30PM | EHSEB
5100B | | | 0470 | transcript
importan | impletion of this course, students will: • Understand the stomics, proteomics, and metabolomics. • Understand om ce of experimental design in omics research. • Understand atching, computational resources, and working with coll | cope of omics research a
ics in terms of investiga
and the challenges and lin | tion for biologic
nitations of big d | enomics, epigenomical questions. • Learn | es,
about the | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Roon | | 14042 | ONCSC
6500-002 | 1.5 | Molecular Mechanisms of Cancer | Sean Tavtigian | M, W, F | 1:00PM -
1:50PM | HCI - Sout
Auditorius | | | | along with
driven profocused of
in moder
diagnosis | as a Fall Selective, this course is focused on the current with how this knowledge relates to cancer diagnosis, treatnesentations on notable publications that were important on clinical cancer biology. It is designed for graduate stund principles and practice of oncology. It will cover generally, treatment, and prevention. The course is organized aroust and practice of oncology. | nent, and prevention. The
to a topic covered in a pa-
dents and post-doctoral
ral principles and new do | ne course alternation lecture. The fellows in basic sevelopments in c | tes didactic lectures v
complementary siste
science departments
ancer etiology, detec | with student-
r-course is
with an intere
tion, | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Roon | | 17084 /
17082 | ONCSC
6701/ BIO
C 6701 | 2.0 | Cell Biology | Matthew Miller &
Ben Myers | T, Th | 2:30PM -
4:00PM | EHSEB
4100B | | Class# | Catalog # | | would you answer them? 2. To be able to articulate sciending of selected topics in cell biology Course Title | Lead Instructor | Day | Time | | | Class # | Catalog # PATH | | Course Title | Aaron Petrey, | | Time 2:00PM – | Bldg/Roon
EHSEB | | 21103 | 6500-002 | 1.0 | Immunity, Inflammation and Infectious Disease une system is an integral part of virtually every organ sy | Melissa Reeves, &
Arabella Young | M, W | 3:20PM | 5100C | | | | intimatel
Studies in
deadly pa
immunol
for under
and funct
and helpi
does the
system re
are the m
Why don | e, to name just a few. Moreover, while the immune syster involved in a variety of diseases that plague the moder in immunology have led revolutionary discoveries that he athogens through vaccination and reversal of cancers through concepts is broadly applicable in multiple disease standing fundamental concepts of cellular and molecular ion, DNA recombination and repair, and cell signaling, ing to solidify cell biology, genetic and molecular biologismmune system detect and respond to microbes? How detect to self tissue? How do cells of the immune system dechanisms used by the immune system to recognize such twe generally get sick twice with the same pathogen? It we generally get sick twice with the same pathogen? It is biology will improve understanding of this course. | n world including all carve fundamentally transfough immune-based the settings. Furthermore, to biology, including every this course was designed y concepts. This course be immunity elicit protein ferentiate and make faith a diversity of microbes. | ncers, behavioral
formed human he
rapies. Thus, an in
he immune systents controlling or
d to introduce be
will allow you to
section from micrate decisions in re-
s? How is the im | I diseases, and autoin
ealth, such as protectiunderstanding of basem provides an effect
ellular development, asic immunology whi
to address questions is obes? Why doesn't the
sponse to external stimune system used to | nmunity. on from ic ive platform
differentiation ile integrating uch as: How ne immune muli? What fight cancer | | Class # | Catalog # | Cr Hrs | Course Title | Lead Instructor | Day | Time | Bldg/Roon | | 14279 | PHARM
6500 | 2.0 | Therapeutics Discovery, Development, and Evaluation | Raphael Franzini &
Mei Koh | M, W, F | 11:10AM -
12:00PM | EHSEB
4100C | | | | Biologica
spanning | -semester course, which is open to graduate students from the course, which is open to graduate students from the characteristic programs, will expect the entire drug development process from discovering and n, assessing pharmacokinetics and pharmacodynamics, and the course of | lore the process of deve
ctive species, developin | loping therapeut
g them into com | ics. Subject matters i pounds that are suital | nclude steps
ole for clinica |