Skip to content

Main Navigation

Matthew Kieber-Emmons

Assistant Professor of Chemistry


B.S. St. Joseph's University

Ph.D. University of Delaware



Matthew Kieber-Emmons' Lab Page

Matthew Kieber-Emmons' PubMed Literature Search

Biological Chemistry Program

Metalloprotein Mechanism bioinspired catalysis signaling


A major contemporary challenge is development of efficient and sustainable systems for energy utilization. Biology is instructive in this endeavor, providing biochemical solutions to a variety of physiological needs in energy conversion and storage. Metalloproteins play central roles in these solutions and thus provide impetus for understanding the mechanistic bioinorganic chemistry of metalloproteins for application to practical bioinspired catalysis.

My laboratory is using what we, and others, learn about how metalloproteins function as inspiration for development of unique energy conversion and storage systems. Being at the nexus of bioinorganic and bioinspired chemistry requires us to employ a multi-disciplinary approach spanning chemical synthesis, molecular biology, physical methods, and theory. This approach fosters a rich training environment for students.

We are presently focused on three distinct problems in energy utilization. First, inspired by photosynthesis, we are developing catalysis that evolve oxygen from water and overcome the traditional synthetic challenges of large overpotentials and poor product release. The catalyst design is accomplished by computationally guided exploration of novel O-O bond forming strategies towards the ultimate goal of practical artificial photosynthesis on electrode surfaces. Second, we are investigating the arguably most important biological energy conversion process, the four-electron reduction of dioxygen to water, which drives the pumping of protons across the mitochondrial membrane during respiration. To uncover the structure-function correlations that couple these events, we are developing new time-resolved spectroscopic probes and methods for in vitro and in vivo use. Finally, we are elucidating the detailed molecular mechanism of ethylene signaling in the ubiquitious copper containing ethylene receptor. The ethylene signaling pathway impacts all phases of plant growth and development and thus has considerable global impact on biofuel and foodstuff production.

More broadly, our fundamental interest in metalloprotein mechanism overlaps problems

with significant health, environmental, and technology implications. Metalloproteins are an intrinsically interesting way to study inorganic chemistry as some metalloprotein catalyzed reactions exist for which there is no benchtop equivalent.


  1. Kieber-Emmons, M.T.; Ginsbach, J.W.; Wick, P. K.; Lucas, H.; Helton, M. E; Lucchese, B.; Suzuki, M.; Zuberbuhler, A.; Karlin, K.D.; Solomon, E.I. “Observation of a CuII2(μ-1,2- peroxo)/CuIII2(μ-oxo)2 Equilibrium and its Implications for Copper–Dioxygen Reactivity” Angew. Chem. 2014, 126, 5035-5039.
  2. Solomon, E.I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J.; Cirera, J.; Qayyum, M.F.; Kieber- Emmons, M.T.; Kjaergaard, C.H.; Hadt, R.G.; Tian, L.; “Copper Active Sites in Biology” Chem. Rev.2014, 114, 3659-3853.
  3. Ginsbach, J.W.; Kieber-Emmons, M.T.; Noguchi, A.; Nomoto R.; Noguchi, A.; Ohnishi, Y.; Solomon, E.I. “Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF” Proc. Nat. Acad. Sci.2012, 109, 10793-10797.
  4. Kieber-Emmons, M.T.; Halime, Z.; Qayyum, M.F.; Hodgson, K.O.; Hedman, B.; Karlin, K.D; Solomon, E.I. “Spectroscopic Elucidation of a New Structure Type in Heme/Cu Dioxygen Chemistry: Implications for O—O Bond Rupture in Cytochrome c Oxidase” Angew. Chem.2012, 51, 168-172.
  5. Kieber-Emmons, M.T.; Li, Y.; Halime, Z.; Karlin, K.D.; Solomon , E.I. “Electronic Structure of a Low-spin Heme/Cu Peroxide Complex: Spin-State and Spin-Topology Contributions to Reactivity” Inorg. Chem.2011, 50, 11777-11786.
  6. Solomon, E.I.; Ginsbach, J.; Heppner, D. E.; Kieber-Emmons, M.T.; Kjaergaard, C.H.; Smeets, P.J.; Tian, L.; Woertnik, J. “Copper dioxygen (bio)inorganic chemistry” Faraday Discuss.2011, 148, 11-39.
  7. Lee,Y.; Lee, D.H.; Park, G.Y.; Lucas, H.R.; Narducci-Sarjeant, A.A.; Kieber-Emmons, M.T.; Vance, M.A.; Milligan, A.E.; Solomon, E.I.; Karlin, K.D. “Sulfur Donor Atom Effects on Copper(I)/O2 Chemistry with Thioanisole Containing Tetradentate N3S Ligand Leading to μ-1,2- Peroxo-Dicopper(II) species” Inorg. Chem.2010, 49, 8873-8885.
  8. Halime, Z.; Kieber-Emmons, M.T.; Qayyum, M.F.; Mondal, B.; Puiu, S.C.; Chufán, E.C.; Sarjeant, A.A.N.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; Karlin, K.D. “Heme- Copper/Dioxygen Complexes: Towards Understanding Ligand Environmental Effects on Coordination Geometry, Electronic Structure and Reactivity” Inorg. Chem.2010, 49, 3629-3645.
  9. Van Heuleven, K.M.; Kieber-Emmons, M.T.; Riordan, C.G.; Brunold, T.C. “Spectroscopic and Computational Studies on the Trans-μ-1,2-Persulfido-Bridged Dinickel(II) Species [Ni2(tmc)2(S2)](OTf)2: Comparison of End-on Persulfido and Peroxo Bonding in Ni(II) and Cu(II) Species” Inorg. Chem.2010, 49, 3104-3112.
  10. * Mock, M.T.; Kieber-Emmons, M.T.; Popescu, C.V.; Yap, G.P.A.; Riordan, C.G.; A Series of Cyanide-Bridged Binuclear Complexes” Inorg. Chim. Acta.2009, 362, 4553-4562. *Invited paper for a special issue honoring Swiatoslav “Jerry” Trofimenko.
  11. Ariyananda, P.W.G.; Kieber-Emmons, M.T.; Yap, G.P.A.; Riordan, C.G.; “Secondary Coordination Sphere Effects on the Reductive Elimination of Thioester in Acetyl Coenzyme A Synthase” Dalton Trans.2009, 4359-4369.
  12. Kieber-Emmons, M.T.; Van Heuvelen, K.M.; Brunold, T.C.; Riordan, C.G.; “Identification of a Trans-μ-1,2-Persulfide Bridged Dinickel(II) species” J. Am.Chem. Soc.2009, 131, 440-441.
  13. Kieber-Emmons, M.T.; Riordan, C.G.; “Dioxygen Activation at Mono-Valent Nickel” Acc. Chem. Res.2007, 40, 618-625.
  14. Kieber-Emmons, M.T.; Annaraj, J.; Seo, M.S.; Van Heuvelen, K.M.; Tosha, T.; Kitagawa, T.; Brunold, T.C.; Nam,W.; Riordan, C.G. “Identification of an “End-on” Nickel-Superoxo Adduct, [Ni(tmc)(O2)]+” J. Am. Chem. Soc.2006, 128, 14230-14231.
  15. Schenker, R.; Mock, M.T.; Kieber-Emmons, M.T.; Riordan, C.G; Brunold, T.C. “Spectroscopic and Computational Studies on [Ni(tmc)CH3]OTf: Implications for Ni-Methyl Bonding in the A Cluster of Acetyl-CoA Synthase” Inorg. Chem.2005, 44, 3605-3617.
  16. Schenker, R.; Kieber-Emmons, M.T.; Riordan, C.G.; Brunold, T.C.; ”Spectroscopic and Computational Studies on the Trans-μ-1,2-Peroxo-Bridged Dinickel(II) Species [{Ni(tmc)}2(O2)](OTf)2: Nature of End-On Peroxo−Nickel(II) Bonding and Comparison with Peroxo−Copper(II) Bonding” Inorg. Chem.2005, 44, 1752−1762.
  17. * Kieber-Emmons, M.T.; Schenker, R.; Yap, G.P.A.; Brunold, T.C.; Riordan, C.G.; “Spectroscopic Elucidation of a Peroxo Ni2(μ-O2) Intermediate Derived from a Nickel(I) Complex and Dioxygen” Angew. Chem. Int. Ed. 2004, 43, 6716 –6718. *Designated a Very Important Publication by journal.
  18. Hammes, B.S.; Kieber-Emmons, M.T.; Letizia, J.A.; Shirin, Z.; Carrano, C.J.; Zakharov, L.N.; Rheingold, A.L.; “Synthesis and characterization of several zinc(II) complexes containing the bulky heteroscorpionate ligand bis(5-tert-butyl-3methylpyrazol-2-yl)acetate: relevance to the resting states of the zinc(II) enzymes thermolysin and carboxypeptidase A” Inorg. Chim. Acta.2003, 346, 227-238.
  19. Monzavi-Karbassi, B.; Shamloo, S.; Kieber-Emmons, M.; Jousheghany, F.; Luo, P.; Lin, K.Y.; Cunto-Amesty, G.; Weiner, D.B.; Kieber-Emmons, T.; “Priming characteristics of peptide mimotopes of carbohydrate antigens” Vaccine, 2003, 21, 753–760.
  20. Hammes, B.S.; Kieber-Emmons, M.T.; Sommer, R.; Rheingold, A.L.; “Modulating the Reduction Potential of Mononuclear Cobalt(II) Complexes via Selective Deprotonation of Tris[(2- benzimidazolyl)methyl]amine” Inorg. Chem.2002, 41, 1351−1353.

to page top

Last Updated: 10/1/20