Skip to content

Bruce Edgar

Professor of Oncological Sciences and Adjunct Professor of Human Genetics

Cell Growth, Cell Cycle, Regeneration, Drosophila, Stem Cells, Organoids

Bruce Edgar


Molecular Biology Program


B.A. Swarthmore College

Ph.D. University of Washington



Our research focuses on the mechanisms that control cell growth and proliferation in several organs in Drosophila, in human cells, and in the gut epithelium of mice. The superlative genetic tools and fast life cycle of Drosophila make it a powerful system for discovery-based research, and its genetic similarity to humans makes much of what we discover relevant to human biology and health. In the Edgar lab we use genetics to characterize the programs of cell growth and proliferation that occur during development, regeneration and tumorigenesis, with the goal of finding the genes that act as limiting regulators in each context. We seek to understand how networks of genes and communities of cells in a tissue function as integrated systems. Techniques in use in the lab range from classical and molecular genetics, to high resolution and live imaging, to whole genome gene expression and chromatin profiling.
Current projects in the lab fall in three areas. One set of projects focuses on the mechanisms of epithelial self-renewal in the intestine of the fruit fly, Drosophila. A second project, paralleling these studies in flies, uses mouse intestinal organoids to address how stem cell-mediated regeneration is controlled in a mammalian epithelium. A third project addresses how proliferation is controlled by rates of cell growth and growth factor signaling in both Drosophila and human cells. For each of these projects the over-arching goal is to define new mechanisms involved in cell and tissue growth control. These mechanisms will be relevant to basic paradigms in cell and developmental biology, and to issues of human health such as cancer diagnosis and therapy, chronic inflammation, and regenerative medicine.

References (Selected Publications)

  1. An SH3PX1-Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. Zhang P, Holowatyj AN, Roy T, Pronovost SM, Marchetti M, Liu H, Ulrich CM, Edgar BA. Dev Cell. 2019 May 20;49(4):574-589.e5. doi: 10.1016/j.devcel.2019.03.029. Epub 2019 Apr 18. PMID:31006650
  2. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Xiang J, Bandura J, Zhang P, Jin Y, Reuter H, Edgar BA. Nat Commun. 2017 May 9;8:15125. doi: 10.1038/ncomms15125. PMID:28485389
  3. Intestinal Stem Cell Pool Regulation in Drosophila. Jin Y, Patel PH, Kohlmaier A, Pavlovic B, Zhang C, Edgar BA. Stem Cell Reports. 2017 Jun 6;8(6):1479-1487. doi: 10.1016/j.stemcr.2017.04.002. Epub 2017 May 4. PMID:28479306
  4. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes. Jin Y, Ha N, Forés M, Xiang J, Gläßer C, Maldera J, Jiménez G, Edgar BA. PLoS Genet. 2015 Dec 18;11(12):e1005634. doi: 10.1371/journal.pgen.1005634. eCollection 2015.
  5. Niche appropriation by Drosophila intestinal stem cell tumours. Patel PH, Dutta D, Edgar BA Nat Cell Biol. 2015 Sep;17(9):1182-92. doi: 10.1038/ncb3214. Epub 2015 Aug 3.
  6. Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. Korzelius J, Naumann SK, Loza-Coll MA, Chan JS, Dutta D, Oberheim J, Gläßer C, Southall TD, Brand AH3, Jones DL, Edgar BA. EMBO J. 2014 Dec 17;33(24):2967-82. doi: 10.15252/embj.201489072. Epub 2014 Oct 8.
  7. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Zielke N, Korzelius J, van Straaten M, Bender K, Schuhknecht GF, Dutta D, Xiang J, Edgar BA. Cell Rep. 2014 Apr 24;7(2):588-98. doi: 10.1016/j.celrep.2014.03.020. Epub 2014 Apr 13.
  8. Tissue design: how Drosophila tumors remodel their neighborhood. Patel PH, Edgar BA. Semin Cell Dev Biol. 2014 Apr;28:86-95. doi: 10.1016/j.semcdb.2014.03.012. Epub 2014 Mar 28
  9. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Edgar BA, Zielke N, Gutierrez C. Nat Rev Mol Cell Biol. 2014 Mar;15(3):197-210. doi: 10.1038/nrm3756.
  10. Intestinal stem cell function in Drosophila and mice. Jiang H, Edgar BA. Curr Opin Genet Dev. 2012 Aug;22(4):354-60. doi: 10.1016/j.gde.2012.04.002. Epub 2012 May 19
  11. LST8 regulates cell growth via target-of-rapamycin complex 2 (TORC2). Wang T, Blumhagen R, Lao U, Kuo Y, Edgar BA. Mol Cell Biol. 2012 Jun;32(12):2203-13. doi: 10.1128/MCB.06474-11. Epub 2012 Apr 9.
  12. Control of Drosophila endocycles by E2F and CRL4(CDT2). Zielke N, Kim KJ, Tran V, Shibutani ST, Bravo MJ, Nagarajan S, van Straaten M, Woods B, von Dassow G, Rottig C, Lehner CF, Grewal SS, Duronio RJ, Edgar BA. Nature. 2011 Oct 30;480(7375):123-7. doi: 10.1038/nature10579.
  13. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA. Cell Stem Cell. 2011 Jan 7;8(1):84-95. doi: 10.1016/j.stem.2010.11.026. Epub 2010 Dec 16.
  14. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N. Development. 2010 Dec;137(24):4147-58. doi: 10.1242/dev.052506. Epub 2010 Nov 10.
  15. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. Wang T, Lao U, Edgar BA. J Cell Biol. 2009 Sep 7;186(5):703-11. doi: 10.1083/jcb.200904090. Epub 2009 Aug 31.
  16. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. Cell. 2009 Jun 26;137(7):1343-55. doi: 10.1016/j.cell.2009.05.014.
  17. Drosophila TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway. Grewal SS, Evans JR, Edgar BA. J Cell Biol. 2007 Dec 17;179(6):1105-13.
  18. Drosophila TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway. Grewal SS, Evans JR, Edgar BA. J Cell Biol. 2007 Dec 17;179(6):1105-13.
  19. A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila. Buttitta LA, Katzaroff AJ, Perez CL, de la Cruz A, Edgar BA. Dev Cell. 2007 Apr;12(4):631-43.
  20. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA. Nat Cell Biol. 2005 Mar;7(3):295-302. Epub 2005 Feb 20.
  21. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Nat Cell Biol. 2003 Jun;5(6):566-71.
  22. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA. Dev Cell. 2002 Feb;2(2):239-49.
  23. The Drosophila cyclin D-Cdk4 complex promotes cellular growth. Datar SA, Jacobs HW, de la Cruz AF, Lehner CF, Edgar BA. EMBO J. 2000 Sep 1;19(17):4543-54.
  24. Ras1 promotes cellular growth in the Drosophila wing. Prober DA, Edgar BA. Cell. 2000 Feb 18;100(4):435-46.
  25. Drosophila myc regulates cellular growth during development. Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P. Cell. 1999 Sep 17;98(6):779-90.
  26. Cis-regulatory elements of the mitotic regulator, string/Cdc25. Lehman DA, Patterson B, Johnston LA, Balzer T, Britton JS, Saint R, Edgar BA. Development. 1999 May;126(9):1793-803.
  27. Coordination of growth and cell division in the Drosophila wing. Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA. Cell. 1998 Jun 26;93(7):1183-93.
  28. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Johnston LA, Edgar BA. Nature. 1998 Jul 2;394(6688):82-4.
  29. Genetic control of cell division patterns in the Drosophila embryo. Edgar BA, O'Farrell PH. Cell. 1989 Apr 7;57(1):177-87.
  30. Repression and turnover pattern fushi tarazu RNA in the early Drosophila embryo. Edgar BA, Weir MP, Schubiger G, Kornberg T. Cell. 1986 Dec 5;47(5):747-54.
Last Updated: 6/28/21